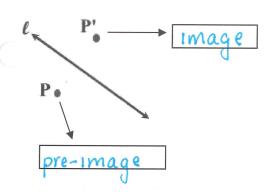


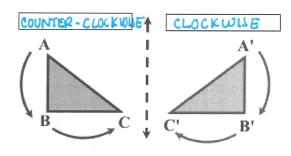
Transformations



ISOMETRY

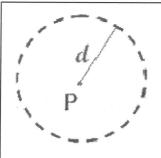
A transformation that preserves length

ORIENTATION

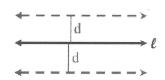


Name of Transformations	Properties	Example	What is preserved?	Is it an isometry? (Direct/Opposite)
Translation	slides an object a set distance in a given direction	$T_{z,-3}(x,y) = (x,y) \rightarrow (x+2,y-3)$	·leng+h ·orientation ·4 measures	Yes! (Direct)
Reflection	flips an object over a point or line	$(x,y) \rightarrow (-x,y)$ $(x,y) \rightarrow (-x,y)$ $r_{y=x}(x,y) = (x,y) \rightarrow (y,x)$	·length · > measures	Yes! ·(opposite)
Rotation	turns an object a set # of degrees	$R_{q0} \cdot (x,y) = (x,y) \rightarrow (-y,x)$	·length ·4 measures ·ortentation	
Dilation	enlarges or shrinks an object by a set #	$D_2(x,y) \rightarrow (x,y) \rightarrow (x,y) \rightarrow (2x,2y)$	·Ameasures ·orientation	No!

LOCUS



The locus of points at a fixed distance, *d*, from point *P* is a circle with the given point *P* as its center and *d* as its radius.

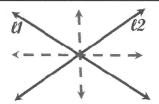


The locus of points at a fixed distance, d, from a line, ℓ , is a pair of parallel lines d distance from ℓ and on either side of ℓ .

The locus of points equidistant from two points, **P** and **Q**, is the perpendicular bisector of the line segment determined by the two points.



The locus of points equidistant from two parallel lines, ℓ_1 and ℓ_2 , is a line parallel to both ℓ_1 and ℓ_2 and midway between them.



The locus of points equidistant from two intersecting lines, ℓ_1 and ℓ_2 , is a pair of bisectors that bisect the angles formed by ℓ_1 and ℓ_2 .

Steps for Solving Locus Problems

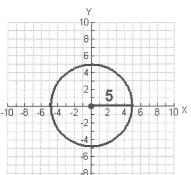
- 1. Draw a diagram showing the given lines and points
- 2. Read carefully to determine the needed condition(s).
- 3. Locate 1 point that satisfies the needed condition and plot it on your diagram. Repeat this process until you notice a pattern.
- 4. Connect your points with a dashed line to indicate the locus.
- 5. Describe the locus in words (circle, Il lines, etc.)
- 6. If 2 conditions exist, repeat the steps on the same diagram and identify the points of intersection.

Equations of Circles

Circle with Center at Origin (0,0)

$$\chi^{2} + q^{2} = r^{2}$$

where the center is (0,0) and the radius is r.

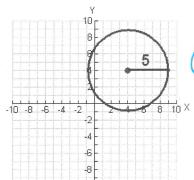


$$\chi^2 + y^2 = 25$$

Circle with Center at Point (h,k)

$$(x-h)^2+(y-k)^2=r^2$$

where the center is (h,k) and the radius is r



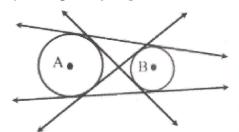
$$(x-4)^2 + (y-4)^2 = 25$$

Common Tangents

Common tangents are lines or segments that are tangent to more than one circle at the same time.

4 Common Tangents

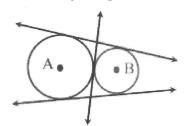
(2 completely separate circles)



2 external tangents 2 internal tangents

3 Common Tangents

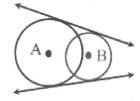
(2 externally tangent circles)



2 external tangents 1 internal tangent

2 Common Tangents

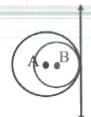
(2 overlapping circles)



2 external tangents0 internal tangents

1 Common Tangent

(2 internally tangent circles)



1 external tangent 0 internal tangents

0 Common Tangents

(2 concentric circles)
Concentric circles are circles with the same center.

0 external tangents 0 internal tangents (one circle floating inside the other, without touching)

0 external tangents0 internal tangents