Do-now:

Determine the truth value of the statement at your table. Be prepared to justify your response.

A polygon is a square if and only if it has four congruent sides. 9
If a polygon is a square, then it has $4 \cong$ sides.
If a polygon has $4 \cong$ sides, then it is a square.

$1+2=12$ if and only if $3+4=34$.
$p \rightarrow q T$
$q \rightarrow p$

Two angles are supplementary if and only if they add up to 180 degrees.

$$
\begin{aligned}
& p \rightarrow q T \\
& q \rightarrow p T
\end{aligned}
$$

Two lines are parallel if and only if the alternate interior angles are congruent.

A point is a line if and only if the orientation of a reflected shape does not change.

Biconditional = a compound statement that uses the phrase if and only if

is true!
A biconditional can only be written if a conditional and its converse have the SAME TRUTH VALUE.
"fond only If"

$$
p \longleftrightarrow q
$$

Two lines ${ }^{P}$ are parallel if and only if the alternate interior angles are congruent.
q

$$
\begin{aligned}
& p \rightarrow q \\
& q \rightarrow p
\end{aligned}
$$

Consider the conditionals and their converses from yesterday for which scenarios can we write a biconditional?

Original Conditional: If a shape has four sides, then it is a rectangle. Now conditional: If a shape is a rectangle, then it has four sides.

Original Conditional: If a polygon is a square, then it does not have three sides.

New Conditional: If a polygon does not have three sides, then it is a square.

Original Conditional: If two lines do not intersect, then they are parallel.
 NewComditional: If two lines are parallel, then they do not intersect.

Original Conditional: If $1+1=3$, then $2+2=5$.
New Conditional: If $2+2=5$, then $1+1=3$.

1. Take out your HW from yesterday. (If you did not do it, now is the time!)
2. Write a biconditional using the theorem you selected. Determine the truth value of the biconditional and justify your response.
3. Hand in your work when done.
