The Cosine of the Difference of Two Angles
$\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$

$P(\cos \beta, \sin \beta)$
$Q(\cos \alpha, \sin \alpha)$
$\sqrt{\cos ^{2} \beta-2 \cos \beta \cos \alpha+\cos ^{2} \alpha+\sin ^{2} \beta-2 \sin \beta \sin \alpha+\sin ^{2} \alpha}$
$P^{\prime}(1,0)(\cos (\alpha-\beta), \sin (\alpha-\beta))$
$\sqrt{\cos ^{2} \beta+\sin ^{2} \beta+\cos ^{2} \alpha+\sin ^{2} \alpha-2 \cos \beta \cos \alpha-2 \sin \beta \sin \alpha}$
$\sqrt{1+1-2 \cos \beta \cos \alpha-2 \sin \beta \sin \alpha}$
$\sqrt{2-2 \cos \beta \cos \alpha-2 \sin \beta \sin \alpha}$

$$
\begin{aligned}
& \sqrt{\left(1-\cos (\alpha-\beta)^{2}+\left(0-\sin (\alpha-\beta)^{2}\right.\right.} \\
& \sqrt{1-2 \cos (\alpha-\beta)+\cos ^{2}(\alpha-\beta)+\sin ^{2}(\alpha-\beta)} \\
& \sqrt{1-2 \cos (\alpha-\beta)+1} \\
& \sqrt{2-2 \cos (\alpha-\beta)}
\end{aligned}
$$

$$
\left.\left.\begin{array}{rl}
(\sqrt{2-2 \cos (\alpha-\beta)}
\end{array}\right)^{2}=(\sqrt{2-2 \cos \beta \cos \alpha-2 \sin \beta \sin \alpha})^{2}\right) ~ \begin{aligned}
2-2 \cos (\alpha-\beta) & =\frac{z-2 \cos \beta \cos \alpha-2 \sin \beta \sin \alpha}{2} \\
\frac{Z \cos (\alpha-\beta)}{2} & =\frac{Z \cos \beta \cos \alpha^{+}-2 \sin \beta \sin \alpha}{2} \\
\cos (\alpha-\beta) & =\cos \beta \cos \alpha+\sin \beta \sin \alpha
\end{aligned}
$$

Find the exact value of $\cos 15^{\circ}$.

$$
\begin{aligned}
\cos (\alpha-\beta) & =\cos \alpha \cos \beta+\sin \alpha \sin \beta \\
\cos (60-45) & =\cos 60 \cos 45+\sin 60 \sin 45 \\
& =\frac{1}{2} \cdot \frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} \\
& =\frac{\sqrt{2}}{4}+\frac{\sqrt{6}}{4} \\
& =\frac{\sqrt{2}+\sqrt{6}}{4}
\end{aligned}
$$

Find the exact value of $\cos 80^{\circ} \cos 20^{\circ}+\sin 80^{\circ} \sin 20^{\circ}$.

$$
\begin{gathered}
\cos (80-20) \\
\cos (60) \\
\frac{1}{2}
\end{gathered}
$$

Verify the identity: $\frac{\cos (\alpha-\beta)}{\sin \alpha \cos \beta}=\cot \alpha+\tan \beta$

