Sum and Difference Formulas for Cosines and Sines
$\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$
$\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$
$\sin (\alpha-\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$
$\sin (\alpha+\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta$

How can we use the cosine of a difference of two angles to verify:

$$
\begin{aligned}
& \cos (\alpha+\beta)=\cos (\alpha-(-\beta)) \\
& =\cos \alpha \cos (-\beta)+\sin \alpha \sin (-\beta) \\
& =\cos \alpha \cos \beta+\sin \alpha(-\sin (\beta)) \\
& =\cos \alpha \cos \beta-\sin \alpha \sin \beta
\end{aligned}
$$

How can we use the cosine of a difference of two angles to verify:

$$
\begin{aligned}
& \text { angles to verity: } \\
& \left.\begin{array}{rl}
\sin \theta=\cos \left(90-\pi_{1} \mathrm{t}\right.
\end{array}\right) \text { se cofunction identity.) } \\
& \begin{aligned}
& \sin (\alpha+\beta)=\cos (90-(\alpha+\beta)) \\
&=\cos (90-\alpha)-\beta) \\
&=\cos (90-\alpha) \cos (-\beta)+\sin (90-\alpha) \sin (-\beta) \\
&=\cos \beta+\cos \alpha \cdot(-\sin \beta)
\end{aligned}
\end{aligned}
$$

How can use the sine of the sum of two angles to verify:

$$
\begin{aligned}
& \sin (\alpha-\beta)=\sin (\alpha+(-\beta)) \\
& =\sin \alpha \cos (-\beta)-\cos \alpha \sin (-\beta) \\
& =\sin \alpha \cos \beta-\cos \alpha(-\sin \beta) \\
& =\sin \alpha \cos \beta+\cos \alpha \sin \beta
\end{aligned}
$$

Find the exact value of $\cos \left(45^{\circ}-30^{\circ}\right)$.

$$
\begin{aligned}
& \cos 15^{\circ} \\
= & \cos 45 \cos 30+\sin 45 \sin 30 \\
= & \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2} \cdot \frac{1}{2} \\
= & \frac{\sqrt{6}}{4}+\frac{\sqrt{2}}{4} \\
= & \frac{\sqrt{6}+\sqrt{2}}{4}
\end{aligned}
$$

Find the exact value of $\sin \frac{7 \pi}{12}=\sin \left(\frac{3 \pi}{12}+\frac{4 \pi}{12}\right)$

$$
\begin{aligned}
& \quad \alpha \quad \beta \\
&= \sin (45+60) \quad=\sin \left(\frac{\pi}{4}+\frac{\pi}{3}\right) \\
&= \sin 45 \cos 60-\cos 45 \sin 60 \\
&= \frac{\sqrt{2}}{2} \cdot \frac{1}{2}-\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} \\
&= \frac{\sqrt{2}}{4}-\frac{\sqrt{6}}{4} \\
&= \frac{\sqrt{2} \cdot \sqrt{6}}{4}
\end{aligned}
$$

