Do-now: Which set of numbers represents the lengths of the sides of a triangle? Why?

1) $\{5,18,13\} \quad 5+13>18$? No
2) $\{4,12,7\} \quad 4+7>12 ?$ No!
(3) $\{13,9,6\}$ $6+9>13 ?$ Yes!

What are all of the possible values for x ?

X

Note: Figure not drawn to scale.

$$
\begin{gathered}
5+7>x \\
12>x
\end{gathered}
$$

$$
2<x<12
$$

$$
\begin{array}{r}
5+x>7 \\
-5
\end{array}
$$

$$
x>2
$$

The three angles in a triangle measure $x, x^{2}+10$, and $60-2 x$. What is the value of x ?

$$
\begin{gathered}
x+x^{2}+10+60-2 x=180 \\
x^{2}-x+70=180 \\
-11 \times 10=-110 \quad-180 \quad-180 \\
-11+10=-1 x^{2}-x-110=0 \quad 5 \times 0=0 \\
(x+10)(x-11)=0 \\
-x+10=0 \\
x-11=0 \\
x=11
\end{gathered}
$$

1) Go to the class web site: geometry2014.weebly.com
2) Under the "Unit 6 - Triangles" tab, click on the link "Side Angle Relationships" found under "Day 4".
3) Manipulate the triangle to complete the following statements (record in your notebook):

In a triangle, the largest angle is always opposite the longest side.
In a triangle, the smallest angle is always opposite the

4) Complete the following exercises:

Classwork: page 293 \#s 7, 12, 16, 17, 22, 23
7) $\angle A, \angle B, \angle C$
12) $\overline{\mathrm{TU}}, \overline{\mathrm{UV}}, \overline{\mathrm{TV}}$
16) No; $2+3 \ngtr 6$
17) Yes; $11+12>15$

$$
\begin{aligned}
& 12+15>11 \\
& 11+15>12
\end{aligned}
$$

22) $4<s<20$
23) $11<s<21$
