Do-now: Turn in classwork from yesterday into basket.

Two-Column Proof

STATEMENTS	REASONS
1.	1.
2.	2.
3.	3.
-	-
.	.
\#.	\#.

If you claim a statement is true that is dependent upon OTHER information, you MUST STATE that information FIRST!

For example, if you state two triangles are congruent because of SAS, there must be three statements (and reasons) prior to this that provides:

1. The first pair of congruent sides (S)
2. The pair of congruent angles (A)
3. The second pair of congruent sides (S)

Given: $\overline{\mathrm{AB}} \| \overline{\mathrm{DC}}$
M is the midpoint of $\overline{B C}$
Prove: $\overline{\mathrm{AB}} \cong \overline{\mathrm{DC}}$

$2 . \angle A \cong \angle D{ }^{A}$ 2. Alt. Int. is are \cong 3.M is the mop BS 3. Given
$4 . \overline{B M} \cong \overline{C M})^{5} 4$. Def. of a midpoint $5 . \angle A M B \cong \angle D M C S^{A} S$. Vertical $\angle s$ are \cong 6. $\triangle A M B \cong \triangle D M C$ 6. AAS
7. $\overline{A B} \cong \overline{D C}$ 7. CPCTC

Given: $\overline{\mathrm{AB}}|\mid \overline{\mathrm{DC}}$
M is the midpoint of $\overline{B C}$
Prove: $\overline{\mathrm{AB}} \cong \overline{\mathrm{DC}}$

3.M is the mod BC 3. Given
4. $\overline{B_{M}} \cong \overline{C M}{ }^{\text {of }}{ }^{B C} 4$. Def. of a midpoint $5 . \angle A M B \cong \angle D M C$. Vertical $\angle s$ are \cong 6. $\triangle A M B \cong \triangle D M C$ 7. $\overline{A B} \cong \overline{D C}$ 7. CPCTC

Given: $\overline{\mathrm{AB}} \| \overline{\mathrm{DC}}$
M is the midpoint of $\overline{B C}$
Prove: $\overline{\mathrm{AB}} \cong \overline{\mathrm{DC}}$

2. $\angle A \cong \angle D A^{A}$ 2. Alt. Int. Is are \cong
3. M is the mod fr 3 . Given
$4 . \overline{B M} \cong \overline{\mathrm{CM}}{ }^{\text {of }}$ 4. Def. of a midpoint $5 \cdot \angle B \cong \angle C, A^{A} 5$. Alt. int. \&s are \cong 6. $\triangle A M B \cong \triangle D M C$ 6. AAS
7. $\overline{A B} \cong \overline{D C}$ 7. CPCTC

