

$$
\begin{aligned}
& \frac{A B}{A^{\prime} B^{\prime}}=\frac{B C}{B^{\prime} C^{\prime}}=\frac{A C}{A^{\prime} C^{\prime}} \\
& \frac{4}{2}=\frac{3}{1.5}=\frac{5}{2.5} \\
& 2=2=2
\end{aligned}
$$

$$
\begin{aligned}
& A(1,1) \text {-->A"'(-0.5, -0.5) } \\
& B(5,1) \text {--> B"(-0.5,-2.5) } \\
& C(5,4) ~-->C " '(-2,-2.5)
\end{aligned}
$$

$\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$	$\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$\sqrt{(5-1)^{2}+(4-1)^{2}}$	$\sqrt{(-2--0.5)^{2}+(-2.5-0.5)^{2}}$
$\sqrt{(4)^{2}+(3)^{2}}$	$\sqrt{(-1.5)^{2}+(-2)^{2}}$
$\sqrt{16+9}$	$\sqrt{2.25+4}$
$\sqrt{25}$	$\sqrt{6.25}$
5	2.5

$\therefore \triangle A B C \sim \triangle A^{\prime \prime \prime} B^{\prime \prime \prime} C^{\prime \prime \prime}$ bk of SSS~.

DIRECTIONS:

1) Graph any triangle $A B C$.
2) Perform AT LEAST 3 transformations on triangle ABC, one of which must be a dilation.
3) Clearly indicate each step and state the new coordinates after each transformation.
4) Verify that your starting triangle and your final triangle are similar using the SSS~ postulate.
**You will have to use the distance formula! Be sure to show all of your work!
